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This paper discusses approximation errors for interpolation in a variational set-
ting which may be obtained from the analysis given by Golomb and Weinberger.
We show how this analysis may be used to derive the power function estimate of
the error as introduced by Schaback and Powell. A simple error tool for the power
function is presented, which is similar to one appearing in the work of Madych and
Nelson. It is then shown that this tool is adequate to reproducing the original error
analysis presented by Duchon. An interesting consequence of our work is that no
explicit use is made of the polynomial reproduction properties of the interpolation
operator. � 1998 Academic Press

1. INTRODUCTION

This paper discusses interpolation of real-valued functions on a set 0/Rn

by certain rather special subspaces, which include radial basis function
interpolation. The set of interpolation points will be A=[a1 , ..., am]/Rn

and the interpolating subspace at its most elementary will be

span[9( }&ai) ; i=1, ..., m],

where 9 : Rn � R. Interpolants will then have the form

u(x)= :
m

j=1

:j 9(x&aj), x # Rn,

where :j # R, j=1, ..., m. In radial basis function interpolation, 9 has the
particularly simple form 9(x)=,( |x| ), where | } | is the usual Euclidean
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norm on Rn and , # C[0, �). In many cases, it is helpful to have additional
polynomial terms in the interpolant. Let 6k&1 denote the subspace of
C(Rn) consisting of polynomials of (total) degree at most k&1. Let
dim 6k&1=l and let p1 , ..., pl be a basis for 6k&1. Then the interpolant
has the form

u(x)= :
m

j=1

:j 9(x&aj)+ :
l

i=1

;i pi (x), x # Rn. (1)

There are so-called ``natural'' conditions which, when added to the inter-
polation conditions, specify the interpolant uniquely in many cases. Suppose
data d1 , ..., dm is prescribed on a1 , ..., am . Then the requirements on the
interpolant are u(aj)=dj , j=1, ..., m (the interpolation conditions) and
�m

j=1 :jpi (aj)=0, i=1, ..., l (the ``natural'' conditions). One can write this
system in matrix form as

\ A
PT

P
0+\

:
;+=\d

0+ ,

where A is an m_m matrix with (i, j) element 9(ai &aj), and P is an m_l

matrix with (i, j) element pj(ai). The vectors :, ; and d have the obvious
definitions. Two conditions should hold for this system to have a unique
solution for all values of the data d. Firstly, the matrix A should be non-
singular over the subspace of vectors : satisfying PT:=0. Secondly, poly-
nomials in 6k&1 should be uniquely determined by their values on A, that
is, if p # 6k&1 and p(ai)=0, i=1, ..., m, then p=0. In this case A is said
to be unisolvent with respect to 6k&1.

A central principle in such interpolation problems is that as the set A

``fills out'' 0, the error between a function and its interpolant should go to
zero. The usual measure for the way A ``fills out'' 0 is h=supt # 0� infa # A |t&a|.
If f # C(0) say, and Uf is its interpolant, then one might hope to get
& f &Uf &=O(h*) as h � 0, where * is some measure of the smoothness
of f. We will establish such error bounds in this paper.

Early work in this area was due to Duchon [3], who developed the
theory of surface splines. His error estimates rest crucially on the property
that his interpolant preserves polynomials of degree k&1. (Since his inter-
polants are all special cases of the ones just described, the polynomial
preservation property of U, that is, Up= p for all p # 6k&1, is clear.)
Another approach, taken by Madych and Nelson [7]. Powell [10] and
Schaback [12] uses a pointwise error estimator. This estimator involves
an expression which Schaback calls the power function. Both Powell and
Schaback compute this power function in some sense. Their estimates coin-
cide with those of Duchon, although one should note that Schaback is
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interested in a much wider range of examples. Also, Powell is very careful
in his computation of the constants involved in the order estimates, and
gets the best known constants for thin-plate splines.

Our purpose in this paper is to work in the setting of both Duchon and
Madych and Nelson, using the power function as the tool for error analysis.
The main effect of this approach is that the polynomial reproduction
properties of the interpolant make no overt appearance in our proofs.
Section two shows (for the first time, we believe) the precise connection
between the variational theory of Golomb and Weinberger and the power
function of Schaback. Section three presents a short, analysis of the power
function when used as an error estimate. Section four shows how to obtain
the error estimates of Duchon using these techniques.

We conclude this section with two examples of our results. Let 0 be a
subset of Rn which is open, bounded, connected and has the cone property.
For each h>0, let Ah be a finite, 6k&1 -unisolvent subset of 0 with
supt # 0� infa # Ah |t&a|<h. Let j be the smallest integer greater than or
equal to 1+(n�2). Let f # C ( j)(0� ), and let Uh f denote the interpolant
specified in Eq. (1), satisfying (Uf )(a)= f (a) for all a # Ah . If 9(r)=r2 ln r
and l=n+1 in Eq. (1), then a consequence of 4.2 is that | f (x)&(Uh f )(x)|=
O(h) as h � 0, for all x # 0. If 9(r)=r3 and l=n+1 in Eq. (1), then we
need to take j to be the smallest integer greater than or equal to (n+3)�2.
Let f # C ( j)(0� ). Then | f (x)&(Uh f )(x)|=O(h3�2) as h � 0 for all x # 0. We
emphasize that in contrast to other authors (Meinguet [9], Powell [10])
we do not make any assumption about the dimension n here. Also the assump-
tion that l=n+1 is supposed to convey to the reader that linear polynomials
are being used in both these interpolants.

2. VARIATIONAL THEORY

In this short section we describe how the salient features of the seminal
paper by Golomb and Weinberger apply to our situation. Let X be a linear
space of continuous, real-valued functions on Rn. Let ( } , }) : X_X � R
be a semi-inner product on X with finite dimensional kernel K having
dimension l. We will assume A=[a1 , ..., am] is a set of points in Rn which
is unisolvent with respect to K. That is, if p # K and p(ai)=0, i=1, ..., l,
then p=0. We will also assume that given x # Rn, there exists M>0 such
that | g(x)|�M( g, g) for all g # X such that g(ai)=0, i=1, ..., m. We may
now form an inner product on X,

(u, v)=(u, v)+ :
l

i=1

u(ai) v(ai), u, v # X. (2)
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Because of our previous hypothesis, point evaluations are continuous linear
functionals on X when X derives its topology from the norm induced by
this inner product. We will set &u&=- (u, u) and assume X is complete
with respect to this norm.

Fix x # Rn such that the point evaluation functionals at x, a1 , ..., am are
linearly independent over X. By the Riesz representation theorem, there
exist q, q1 , ..., qm # X such that u(x)=(u, q) and u(ai)=(u, qi), i=1, ..., m
for all u # X. Define the set G by

G=[ g # X : g |A=0],

and let w be the element of G such that &w&=1 and

w(x)=sup[ | g(x)| : g # G, &g&=1].

Note that (G, & }&) is again a Hilbert space, and so the Riesz representation
theorem guarantees the uniqueness of w. Let & }& be the norm induced by
the inner product. Fix f # X. The closed, convex set

[u # X : u |A= f |A],

has a unique point of minimal norm. We denote this element by Uf and
refer to it as the minimal norm interpolant to f. It is this interpolant which
we will concentrate on in our analysis. Because f &Uf # G and Uf is
perpendicular to G,

| f (x)&(Uf )(x)| 2�w(x)2 & f &Uf &2

=w(x)2 ( f &Uf, f &Uf )

=w(x)2 [( f, f )&(Uf, Uf )]

�w(x)2 ( f, f ). (3)

The element w(x) is essentially the power function of Schaback, although
it is not easily recognised as such in this abstract form. Also, the bound
given in (3) is best possible, since one may easily check that |w(x)&(Uw)(x)|
=w(x) - (w, w). Let P : X � G denote the orthogonal projection. Then

w(x)=sup[ | g(x)| : g # G, &g&=1]

=sup[ |( g, Pq)| : g # G, &g&=1]

=&Pq&

=- (Pq, Pq).

Unfortunately, the above observation doesn't really help to compute w(x).

248 LIGHT AND WAYNE



File: DISTIL 311805 . By:CV . Date:29:01:98 . Time:08:46 LOP8M. V8.B. Page 01:01
Codes: 2739 Signs: 1369 . Length: 45 pic 0 pts, 190 mm

2.1. Lemma. Let a1 , ..., am # Rn have representers q1 , ..., qm # X, so that
f (ai)=( f, qi), i=1, ..., m, for all f # X. Let x # Rn have representer q0 . Then
there exist :0 , ..., :m # R such that w=�m

i=0 :i qi . Furthermore, these
coefficients are determined by the equations &w&=1 and

0=w(aj)= :
m

i=0

:i (qi , qj), j=1, ..., m.

Proof. Define

Gx=[g # X : g |A=0 and g(x)=0].

Using the representers, we can write

Gx=[g # X : (g, qi)=0, i=0, ..., m]. (4)

Now let Q : X � Gx be the orthogonal projection. Since w |A=0, (w&Qw)|A

=0. Hence w&Qw # G. Also, w(x)&(Qw)(x)=w(x). Finally, &w&Qw&�
&w&=1. By the uniqueness of w, it now follows that Qw=0. Thus w # G=

x .
From (4) it follows that there exist :0 , ..., :m # R such that w=�m

i=0 :i qi .
The coefficients :0 , ..., :m are defined by the equations &w&=1 and

:
m

i=0

:i (qi , qj)= :
m

i=0

:iqi (aj)=w(aj)=0, j=1, ..., m. K

2.2. Lemma. Let p1 , ..., pl # K be such that pi (aj)=$ij , i, j=1, ..., l.
Then for all f # X, f (ai)=( f, pi), i=1, ..., l.

Proof. The conclusion of the Lemma follows immediately from

( f, pi)=( f, pi)+ :
l

j=1

f (aj) pj (ai)=0+ :
l

j=1

f (aj) pj (ai)= f (ai). K

2.3. Lemma. Let :0 , ..., :m be defined as in 2.1, and p1 , ..., pl as in 2.2.
Then �m

r=0 :rp(ar)=0 for all p # K.

Proof. We have, by 2.1, for i=1, ..., l,

:
m

r=0

:r pi (ar)= :
m

r=0

:r( pi , qr)=\ pi , :
m

r=0

:rqr += :
m

r=0

:rqr(ai)=0.

Since p1 , ..., pl is a basis for K, the result follows. K

We now make explicit our assumptions about the sort of spaces we are
considering.
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2.4. Assumption. We will suppose X/C(Rn) and the following hold:

(i) A semi-inner product ( } , } ) is defined on X with kernel K,

(ii) Let a1 , ..., al be unisolvent with respect to K and let p1 , ..., pl # K
satisfy pi (aj)=$ij , 1�i, j�l. Suppose , # C(R) is such that, for each
x # Rn,

rx( y)=,( | y&x| )& :
l

i=1

pi (x) ,( | y&ai | ), y # Rn,

defines a function rx # X with ( f, rx)= f (x) for all f # X such that f (a1)= } } }
= f (al)=0. Here, for u, v # X,

(u, v)= :
l

i=1

u(ai) v(ai)+(u, v).

The above assumption describes the representer for the point evaluation
at x, at least for a subset of functions in X. Although the form of rx may
look overly elaborate, there are two key principles here. Firstly, if f # X and
f (a1)= } } } = f (al)=0, then ( f, rx)=( f, rx). In fact, ( f, ,( | }&x| )) is
usually well-defined for f in some subset of X. For example, in the cases
considered by Duchon, f should be a compactly supported, infinitely
differentiable function. However, ,( | } | ) is not usually itself a member of X.
One has to take linear combinations of the form �m

i=0 *i,( | }&bi | ), and
demand that �m

i=0 *ip(bi)=0 for all p # K in order that this linear
combination is an element of X. Looking back to the form of rx , we see
that the coefficients satisfy

p(x)& :
l

i=1

pi (x) p(ai)= p(x)& p(x)=0,

as required.

2.5. Lemma. Suppose X satisfies 2.4. Then the representer of the point
evaluation at x # Rn (i.e., the element qx # X such that ( f, qx)= f (x) for all
f # X ) has the form

qx( y)=,( | y&x| )& :
l

i=1

pi (x) ,( | y&ai | )& :
l

i=1

pi ( y) ,( |x&ai | )

+ :
l

i, j=1

,( |ai&aj | ) pj ( y) pi(x)+ :
l

i=1

pi ( y) pi (x).
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Proof. Firstly, let 1=[u # X : u(a1)= } } } =u(al)=0]. Then define
P : X � X by Pf =�l

i=1 f (ai) pi . It is easy to check that P is the ortho-
gonal projection of X onto 1=, and so I&P is the orthogonal projection
onto 1. Now,

( f, (I&P) rx)={f (x),
0,

f # 1
f # 1= .

Note from the given formulae for P, rx and qx that

(I&P) rx=qx& :
l

r=1

pi (x) pi .

Now, for any f # X, using 2.2,

f (x)=( f &Pf )(x)+(Pf )(x)

=( f &Pf, (I&P) rx)+(Pf )(x)

=( f, (I&P) rx)+ :
l

i=1

( f, pi) pi (x)

=\ f, (I&P) rx+ :
l

i=1

pi (x) pi+
=( f, qx),

as required. K

The next theorem is the main one in this section, and explains the con-
nection between the power function of Schaback and Powell and the work
of Golomb and Weinberger.

2.6. Theorem. Define a0=x, and suppose a0 , ..., am have representers
q0 , ..., qm , respectively. Let :0 , ..., :m # R be such that the power function
w=�m

i=0 :iqi . Then,

w(x)2= :
m

r, s=0

;r ;s,( |ar&as | ),

where ;r=:r�:0 , r=0, ..., m.
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Proof. Set �z( y)=,( | y&z| ), y, z, # Rn. Then from 2.5,

w= :
m

r=0

:r qr

= :
m

r=0

:r {�ar
& :

l

i=1

pi (ar) �ai
& :

l

i=1

pi�ai
(ar)

+ :
l

i, j=1

�ai
(aj) pj (ar) pi+ :

l

i=1

pi (ar) pi =
= :

m

r=0

+r �ar
+\,

where \ belongs to K. We have

+r={
:r , r=0, l+1, ..., m

,
:r& :

m

s=0

:s pr(as), r=1, ..., l

and

\= :
m

r=0

:r { :
l

i, j=1

�ai
(aj) pj (ar) pi& :

l

i=1

pi�ai
(ar)+ :

l

i=1

pi (ar) pi= .

Now from 2.3, �m
s=0 :spr(as)=0, r=1, ..., l, and so +r=:r , r=0, ..., m.

Then, again using 2.3 twice,

\=& :
l

i=1

pi :
m

r=0

:r�ai
(ar)

+ :
l

i, j=1

�aj
(ai) pi :

m

r=0

:rpj (ar)+ :
l

i=1

pi :
m

r=0

:rpi (ar)

=& :
l

i=1

pi :
m

r=0

:r�ai
(ar).

Thus,

w= :
m

r=0

:r�ar
& :

l

i=1

pi :
m

r=0

:r �ai
(ar). (5)

Now recall that w # G, so that

1=&w&2=(w, w)=\ :
m

s=0

:sqs , w+=:0(q0 , w)=:0w(x).
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Also, from (5), with a final application of 2.3,

(w, w)=\ :
m

s=0

:s qs , w+
= :

m

s=0

:sw(as)

= :
m

r, s=0

:r:s �ar
(as)& :

l

i=1

:
m

r=0

:r�ai
(ar) :

m

s=0

:spi (as)

= :
m

r, s=0

:r:s �ar
(as).

Finally,

:
m

r, s=0

;r ;s�ar
(as)= :

m

r, s=0

:r:s

:2
0

�ar
(as)

=
1

:2
0

:0w(x)

=
1

:0

w(x)

=w(x)2. K

Theorem 2.6 is the power function of Schaback, and has virtually identical
form to that of Powell [10]. To deduce the form given in Powell, one
simply defines #i=&;i , i=1, ..., m. Then

w(x)2= :
m

r, s=1

#r#s ,( |ar&as | )&2 :
m

r=1

#r ,( |x&ar | )+,(0).

If we now recall that Powell treats a special case where ,(0)=0, then the
right hand side of the above is exactly that obtained by Powell.

2.7. Lemma. Let A and B be subsets of Rn which are unisolvent with
respect to K. Let the power functions associated with A and B be wA and wB

respectively. If A/B, then wA�wB .

Proof. Fix x # Rn. Define GA=[g # X : g |A=0] and GB=[g # X : g | B

=0]. Then GB /GA , and so

wB(x)=sup[ | g(x)| : g # GB , &g&=1]

�sup[ | g(x)| : g # GA , &g&=1]

=wA(x). K
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If one is interested in the asymptotic behaviour of the error, which will
be the main concern in the next section, then 2.7 can be used to good effect.
The next result shows how this is done.

2.8. Theorem. Let X satisfy 2.4. Let Uf be the minimal norm interpolant
to f on a1 , ..., am # Rn. Suppose l�m and [a1 , ..., al] is a unisolvent set of
points with respect to K. Then

| f (x)&(Uf )(x)|2�{,(0)&2 :
l

i=1

pr(x) ,( |x&ar | )

+ :
l

r, s=1

pr(x) ps(x) ,( |ar&as | )= ( f, f ) .

Proof. From (3),

[ f (x)&(Uf )(x)]2�w(x)2 ( f, f ).

Here, of course, w refers to the power function based on the points
a1 , ..., am . However, because of 2.7, the inequality will continue to hold if
we regard w as being the power function based on a1 , ..., al . From 2.6,

w(x)2= :
l

r, s=0

;r;s,( |ar&as | ),

where ;r=:r �:0 and w=�l
i=0 :iqi . By virtue of 2.2, w=:0q0+�l

i=1 :i pi .
Now, for j=1, ..., l,

0=w(aj)=:0q0+ :
l

i=1

:ipi (aj)

=:0q0(aj)+:j

=:0(q0 , pj)+:j

=:0pj (x)+:j .

Hence, :j�:0=&pj (x), and the result follows. K

The following is a rephrasing of 2.8 which will prove useful.

2.9. Corollary. Let X satisfy 2.4. Suppose g # X satisfies g(a1)= } } }
= g(al)=0, where [a1 , ..., al] is a unisolvent set of points with respect
to 6k&1. Then
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[g(x)]2�{,(0)&2 :
l

r=1

pr(x) ,( |x&ar | )

+ :
l

r, s=1

pr(x) ps(x) ,( |ar&as | )= ( g, g) .

Proof. One simply notices from (3) that if g(a1)= } } } = g(al)=0, then

[g(x)]2�[w(x)]2 ( g, g) .

Here, w is the power function based on a1 , ..., al . One then follows 2.8
identically. K

3. ERROR ESTIMATES

In this section, we examine the asymptotic behaviour of the power
function

,(0)&2 :
l

r=1

pr(x) ,( |x&ar | )+ :
l

r, s=1

pr(x) ps(x) ,( |ar&as | ),

in the special case that K=6k&1. We need some straightforward results
from Lagrange interpolation theory. These may be found in Duchon [3],
and in a wide variety of other places, particularly in the researches of finite
element theory.

3.1. Definition. Let b=[b1 , ..., bl] be a set of points in Rn which is
unisolvent with respect to 6k&1. Then Lb : C(Rn) � 6k&1 will denote the
Lagrange interpolation operator defined by (Lb f )(bi)= f (bi), i=1, ..., l.

3.2. Lemma. Let 0 be a closed, bounded subset of Rn, and let b1 , ..., bl # 0
be a unisolvent set of points with respect to 6k&1. Let p1 , ..., pl # 6k&1 be
the cardinal functions defined by pi (bj)=$ij , i, j=1, ..., l. Suppose Lb : (C(0),
& }&�) � (6k&1 , & }&�). Then

&Lb&=max
x # 0

:
l

i=1

| pi (x)|.

3.3. Lemma. Let B(x, r)=[ y # Rn : &y&x&�r]. Let b=(b1 , ..., bl)
denote an l-tuple of points in Rn which is unisolvent with respect to 6k&1.
Then there exists $>0 such that if

c=(c1 , ..., cl) # B(b1 , $)_ } } } _B(bl , $),
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then (c1 , ..., cl) is also a unisolvent set of points. Furthermore, if 0 is a
closed, bounded, connected set containing B(bi , $), i=1, ..., l, then there
exists a constant K=K(k, 0) such that &Lc&�K for all c=(c1 , ..., cl) #
B(b1 , $)_ } } } _B(bl , $).

Proof. Let U=[(a1 , ..., al) : a1 , ..., al # Rn and this set of points is
unisolvent with respect to 6k&1]. Then U is an open subset of (Rn)l (its
complement describes an algebraic surface in (Rn)l). This establishes the
first part of the lemma. Next, for each f # C(0), the mapping c [ &Lc f &
is a continuous mapping from B(b1 , $)_ } } } _B(bl , $) into R. Since the
domain of this mapping is compact,

sup[&Lc f & : c=(c1 , ..., cl) # B(b1 , $)_ } } } _B(bl , $)]<�.

The required result now follows from the uniform boundedness principle
[11, pp. 44�45]. K

3.4. Lemma. Let 0 be a closed, bounded subset of Rn and suppose
Lb : (C(0), & }&�) � (6k&1 , & }&�) is a Lagrange interpolation operator
based on the set of points b=[b1 , ..., bl] # 0. Let _ be a dilation operator,
so that _( y)=hy, h # R+, y # Rn. Then the operator L_(b) : C(_(Q)) � 6k&1

has &L_(b)&=&Lb&.

Proof. Suppose pb
i (bj)=$ij , i, j=1, ..., l. Then, ( pb

i b _&1)(_(bj))=$ij ,
i, j=1, ..., l. Since pb

i b _&1 # 6k&1 , these functions must be the cardinal
functions for L_(b) . Now

&L_(b) &=max { :
l

i=1

|( pb
i b _&1)(x)| : x # _(0)=

=max { :
l

i=1

|( pb
i b _&1)(_( y))| : y # 0=

=max { :
l

i=1

|( pb
i ( y)| ; y # 0=

=&Lb &. K

3.5. Lemma (Duchon). Let 0 be an open subset of Rn having the cone
property. Then there exist M, M1 and h0>0 such that to each 0<h<h0 ,
there corresponds a set Th /0 such that

(i) B(t, h)/0 for all t # Th ,

(ii) 0/�t # Th
B(t, Mh),

(iii) �t # Th
/B(t, Mh)�M1 .

Here /A is the function which has value one on A and zero elsewhere.
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The next theorem is similar to one given by Madych and Nelson [8].

3.6. Theorem. Let X/C(Rn) satisfy 2.4, with K=6k&1. Let 0 be an
open, connected subset of Rn having the cone property. Let A be a finite,
6k&1 -unisolvent subset of 0 and define h=supt # 0� infa # A |t&a|. There
exists h0>0 and constants c1 , c2>0, both independent of h and ,, such that

| f (x)&(Uf )(x)|2�c1 max
0�r�c2h

|,(r)&,(0)| ( f, f ) ,

for all x # 0, f # X, and h<h0 .

Proof. We begin by taking v1 , ..., vl as a set of 6k&1-unisolvent points
in Rn. By 3.3, there exists $>0 such that the set B(v1 , $)_ } } } _B(vl , $)
is a set of unisolvent points in (Rn)l. Dilation by a factor 1�$ generates a
new set of points u1 , ..., ul such that the set B(u1 , 1)_ } } } _B(ul , 1) is a
6k&1-unisolvent subset of (Rn)l. Choose R>0 such that B(ui , 1)/
B(0, R), i=1, ..., l.

Choose h0 in accordance with 3.5. Fix h>0 with Rh<h0 . By 3.5, there
exists a set Th /0 such that B(t, Rh)/0 for all t # Th and �t # Th

B(t, MRh)
#0. Now suppose x # 0. Then x # B(t, MRh) for some t # Th . Define _ :
B(t, MRh) � B(0, MR) by _( y)=h&1( y&t), y # B(t, MRh). Each ball
B(ui , 1) must contain at least one image under _ of a point in A. Hence
we can select a1 , ..., al # B(t, Rh) such that _(ai) # B(ui , 1), i=1, ..., l.
Let La : C(B(t, MRh)) � 6k&1 be the Lagrange interpolation operator
associated with a=[a1 , ..., al]. By 3.4, &La &=&L_(a)&. But, by 3.3, there
exists a constant K such that &L_(a)&<K independent of the particular
selection of a1 , ..., al . Now, apply 2.8 for x # B(t, MRh). Then

[ f (x)&(Uf )(x)]2

�{,(0)&2 :
l

i=1

pr(x) ,( |x&ar | )+ :
l

r, s=1

pr(x) ps(x) ,( |ar&as | )= ( f, f )

={&2 :
l

r=1

pr(x)[,( |x&ar | )&,(0)]

+ :
l

r, s=1

pr(x) ps(x)[,( |ar&as | )&,(0)]= ( f, f )

� max
0�| y|�2MRh

[ |,( | y| )&,(0)|](2K+K 2)( f, f ) .

Setting c1=2K+K 2 and c2=2MR gives the required result. K
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4. SURFACE SPLINES

We now turn to a deeper application of the power function��the surface
splines of Duchon. Define a measure + on Rn by d+(x)=|x| 2s dx, where dx
is the usual Lebesgue measure on Rn, and s # R. We will consider the space

X=[ f : f is a distribution with D:f@# L2(+), : # Zn
+ , |:|=k].

We will assume throughout this section that 2k+2s>n. This has the effect
(Duchon [4]) that X/C(Rn). The space X is equipped with the semi-inner
product

( f, g) = :
|:|=k

c: |
Rn

(D:f@ )(D:g@) d+(x),

where � |:|=k c:!2:=|!| 2k. The kernel of the semi-inner product is 6k&1 ,
and if [a1 , ..., al] is a 6k&1-unisolvent set of points in Rn then,

( f, g)= :
l

i=1

f (ai) g(ai)+( f, g),

defines an inner product on X. This inner product induces a norm on X in
the usual way. When X is normed by this induced norm, we will denote
the resulting (Hilbert) space by BLk+s(Rn). Here BL is in honour of Beppo
Levi (see [2] for details), who seems to have been the first person to study
these spaces. The spaces BLk+s(Rn) then satisfy the assumptions of 2.4 with

,(r)={dknr2k+2s&n ln r,
dkn r2k+2s&n,

2k+2s&n is an even integer
otherwise

.

Here the dkn are known constants whose values need not concern us. The
first result is a straightforward application of 3.6, which borrows and
amplifies a technique used by Powell [10] in the context of thin-plate
splines.

4.1. Lemma. Let [a0 , ..., am]/Rn be any 6k&1 -unisolvent set of points.
Let :0 , ..., :m # R be chosen so that for all p # 6k&1 , �m

r=0 :r p(ar)=0. If
d # Z+ is such that 2d&2k+1�0, then

:
m

r, s=0

:r:s |ar&as | 2d=0.
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Proof. Using the binomial theorem,

:
m

r, s=0

:r :s |ar&as | 2d

= :
m

r, s=0

:r:s( |ar | 2&2aras+|as | 2)d

= :
m

r, s=0

:r:s :
d

j=0
\d

j + [ |ar | 2(d& j) ( |as | 2&2aras)
j]

= :
m

r, s=0

:r:s :
d

j=0
\d

j + { |ar | 2(d& j) :
j

i=0
\ j

i + |as | 2( j&i) (&2) i (aras)
i=

= :
d

j=0
\ d

j + :
j

i=0
\ j

i + (&2) i { :
m

r=0

:r |ar | 2(d& j) :
m

s=0

:s |as | 2( j&i) (ar as)
i=
(6)

Now |ar | 2(d& j) (ar as)
i can be regarded as the value of a polynomial of

degree 2d&2 j+i at ar , while |as | 2( j&i) (aras)
i can be regarded as the value

at as of a polynomial of degree 2 j&i. Hence,

:
m

r=o

:r |ar | 2(d& j) ai
r=0 if 2d&2 j+i<k,

while

:
m

s=0

:s |as | 2( j&i) ai
s=0 if 2( j&i)+i<k.

Thus the whole expression in (6) is zero if for all 0�i< j�d, either
2d&(2 j&i)&k<0 or 2 j&i&k<0. These conditions reduce to 2 j&i<k
or 2 j&i>2d&k. All possible values will be captured if 2d&k�k&1, that
is 2d&2k+1�0. K

4.2. Theorem. Let 0 be an open, connected subset of Rn having
the cone property. For each h>0, let Ah be a finite subset of 0 with
supt # 0� infa # Ah

|t&a|�h. Let (n�2)&k<s<n�2. For each f # BLk+s(Rn),
let Uh f be the minimal norm interpolant to f on Ah . Then | f (x)&(Uhf )(x)|
=O(hk+s&n�2) as h � 0 for all x # 0.

Proof. If 2k+2s&n is not an even integer, then a direct application of
3.6 gives

| f (x)&(Uh f )(x)| 2�c1 dkn(c2 h)2k+2s&n ( f, f ) ,
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for all f # BLk+s(Rn). This shows that | f (x)&(Uh f )(x)|=O(hk+s&n�2) as
h � 0. If 2k+2s&n is an even integer, then a direct analysis would yield
logarithmic terms in the error. Since ,(0)=0, the power function has the
form

8(x)=&2 :
l

r=1

pr(x) ,( |x&ar | )+ :
l

r, s=1

pr(x) ps(x) ,( |ar&as | ).

Set �_(r)=dkn r2k+2s&n ln _r, where _>0. Set

9(x)=&2 :
l

r=1

pr(x) �_( |x&ar | )+ :
l

r, s=1

pr(x) ps(x) �_( |ar&as | ).

Since �_(r)=,(r)+dknr2k+2s&n ln _, we have

9(x)=8(x)&{2 :
l

r=1

pr(x) |x&ar | 2k+2s&n

& :
l

r, s=1

pr(x) ps(x) |ar&as | 2k+2s&n= dkn ln _.

Now we intend to apply 4.1. Setting 2k+2s&n=2d we see that we need
2d&2k+1�0, so that s�(n&1)�2. This is precisely the condition in the
theorem. Now putting x=a0 and :0=&1, :r= pr(x), 1�r�l,

0= :
l

r, s=0

:r :s |ar&as | 2k+2s&n

= :
l

r, s=1

:r :s |ar&as | 2k+2s&n&2 :
l

r=0

:r |a0&ar |2k+2s&n

Thus 9(x)=8(x). Now, the analysis of 3.6 shows that

| f (x)&(Uh f )(x)| 2�c1 max
0�r�c2h

|�_(r)&�_(0)| ( f, f )

�c1 max
0�r�c2h

|�_(r)| ( f, f ).

Furthermore, by 3.6 c1 and c2 do not depend on �_ , and so in particular
c1 does not depend on _. Now,

max
0�r�c2h

|�_(r)|=dkn max {(c2 h)2k+2s&n |ln(c2 _h)|,

1
2k+2s&n \

1
_

exp _ &1
2k+2s&n&+

2k+2s&n

= ,
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as can be seen by elementary calculus. Choosing _=1�h, this maximum is
of order h2k+2s&n as required. Then | f (x)&(Uh f )(x)|=O(hk+s&n�2). K

It is possible to obtain improvements to the above results by assuming
the function f has a higher degree of smoothness, and using a mix of techni-
ques from Duchon [3] and the theory of finite elements (see Ciarlet [5],
for example). A better version of 3.6 is what is needed. The improvements
demand additional hypotheses on the domain 0 under discussion. We list
these assumptions now.

4.3. Assumption. The following are useful properties of a set 0/Rn:

(4.3.1) 0 is open, bounded and connected.

(4.3.2) 0 has the cone property.

(4.3.3) 0 has a Lipschitz boundary.

It will help to introduce the notation

| f |p, 0={ :
|:|=k

c: |
0

|(D:f )(x)| p dx=
1�p

,

where 0 is a measurable subset of Rn, 1� p��, and f # X. Also write

& f &p, 0={|0
| f (x)| p dx=

1�p

,

whenever f is a pth power integrable, real-valued function on 0. (Of course,
the usual obvious modifications are to be made if p=�.) We will use
Wk, p(0) to denote the usual Sobolev space of functions all of whose
derivatives up to and including order k are in L p(0).

4.4. Lemma (Duchon [3]). Let 0/Rn satisfy 4.3. Let f # W k, 2(0).
Then there exists a unique element f 0 # X such that f 0| 0= f, and amongst
all elements of X satisfying this condition, | f 0| 2, Rn is minimal. Furthermore,
there exists a constant K=K(0) such that, for all f # Wk, 2(0),

| f 0| 2, Rn�K | f | 2, 0 .

We need a modest strengthening of 4.4, which comes from the following
change of variables result.

4.5. Lemma. Let 0 be a measurable subset of Rn. If the linear change of
variables _(x)=t+h(x&a) is used, where h>0, and a, t # Rn, then for all
u # Wk, p(0),

|u|p, _(0)=hn�p&k |u b _|p, 0 .
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Proof. We have, using the change of variable formula for integration
(Apostol [1]),

|u| p
p, _(0)= :

|:|=k

c: |
_(0)

|(D:u)(x)| p dx

= :
|:|=k

c:hn |
0

|(D:u b _)(x)| p dx.

Now, if |:|=k, the

(D:u)(x)=[D:(u b _ b _&1)](x)=[D:(u b _)](_&1(x)) h&k.

Hence, for such values of :,

(D:u b _)(x)=(D:u)(_(x))=h&k[D:(u b _)](x).

Finally,

|u| p
p, _(0)= :

|:|=k

c: hn |
0

h&kp |[D:(u b _)](x)| p dx

=hn&kp |u b _| p
p, 0 . K

4.6. Lemma. Let B be any ball of radius h in Rn. Let f # Wk, 2(B). Then
there exists a unique element f B # X such that f B|B= f and amongst all such
elements of X, | f B| 2, Rn is minimal. Moreover, there exists a constant C,
independent of B, such that for all f # Wk, 2(B),

| f B| 2, Rn�C | f | 2, B .

Proof. This result is identical to 4.4 except for the fact that C can be
taken independent of B. To see this, let B=[x # Rn : |x&a|�h] and define
_(x)=h&1(x&a). Let B0 denote the set [x # Rn : |x|�1]. Then _(B)=B0 .
Take f # Wk, 2(B). Then f b _&1 # Wk, 2(B0). Set F= f b _&1. It is an elemen-
tary property of the semi-norm that FB0= f B b _&1. By 4.4, | f B b _&1| 2, Rn�
K(B0) | f B b _&1| 2, B0

. Using 4.5, we obtain hn�2 | f B| 2, Rn�K(B0) hn�2 | f B| 2, B .
Taking C=K(B0) concludes the proof. K

4.7. Theorem (Duchon). Let 0 be a subset of Rn satisfying 4.3, let
1� p�� and let 2k>n. For each h>0, let Ah be a finite, 6k&1-unisolvent
subset of 0 with supt # 0� infa # Ah

|t&a|�h. For each f # Wk, 2(0) let Uh f
be the minimal norm interpolant to f on Ah , so that Uh f # BLk(Rn). There
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exists a constant h0>0 and a constant C>0, independent of h, such that for
all f # Wk, 2(0) & L p(0),

& f &Uh f &p, 0�{Chk&(n�2)+(n�p) | f | 2, 0

Chk | f | 2, 0

2� p��
1� p<2

.

Proof. We begin as in 3.6 and follow that proof until a1 , ..., al have
been constructed in B(t, MRh). We do not apply 2.8, however. Instead we
will firstly define f 0 in accordance with 4.4. For a large part of the proof
we wish to work with f 0 and not f. For convenience, we will henceforth
write f for f 0, and U for Uh . Now use B to denote B(t, MRh) and define
( f &Uf )B in accordance with 4.4, so that ( f &Uf )B| B=( f &Uf )| B . Then
( f &Uf )B (ai)=0, i=1, ..., l, and so 2.9 can be used to give

[ f (x)&(Uf )(x)]2=[( f &Uf )B (x)]2�8(x) |( f &Uf )B| 2, R n .

Now, using 4.6 gives

[ f (x)&(Uf )(x)]2�C8(x) | f &Uf | 2
2, B ,

where C is independent of the choice of B(t, MRh). Thus

& f &Uf &p, B�- C | f &Uf | 2, B {|B
|8(x)| p�2 dx=

1�p

. (7)

Now argue as in 3.6 again to realise 8 as

8(x)=&2 :
l

r=1

pr(x)[,( |x&ar | )&,(0)]

+ :
l

r, s=1

pr(x) ps(x)[,( |ar&as | )&,(0)].

Then, since ,(0)=0,

|
B

|8(x)| p�2 dx=|
B }&2 :

l

r=1

pr(x) ,( |x&ar | )

+ :
l

r, s=1

pr(x) ps(x) ,( |ar&as | ) }
p�2

dx

�|
B {2 :

l

r=1

| pr(x) ,( |x&ar | )|

+ :
l

r, s=1

| pr(x) ps(x) ,( |ar&as | )|=
p�2

dx
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Define *=max[,(r) : 0�r�MRh], and 4=max[�l
r=1 | pr(x)| : x #

B(t, MRh)]. Then

|
B

|8(x)| p�2 dx�* p�2 |
B {2 :

l

r=1

| pr(x)|+ :
l

r, s=1

| pr(x)ps(x)|=
p�2

dx

�* p�2 |
B

(24+42) p�2 dx

�K1* p�2hn(24+42) p�2.

Now, from (7), setting K p
2 =K1 C p�2(24+42) p�2,

& f &Uf &p, B�K2 *1�2hn�p | f &Uf | 2, B . (8)

Set 0*=�t # Th B(t, MRh). Using the fact that if a # Rm than &a&p�&a&2

for p�2, we have

& f &Uf &p, 0�& f &Uf &p, 0*

�{ :
t # Th

& f &Uf & p
p, B(t, MRh)=

1�p

�K2 *1�2hn�p { :
t # Th

| f &Uf | p
2, B(t, MRh)=

1�p

�K2 *1�2hn�p { :
t # Th

| f &Uf | 2
2, B(t, MRh)=

1�2

�K2 *1�2hn�p { :
t # Th

|
R n

/B(t, MRh) \ :
|:|=k

c: |D:( f &Uf )| 2+=
1�2

�K2 *1�2hn�p {|R n \ :
|:|=k

c: |D:( f &Uf )| 2+ :
t # Th

/B(t, MRh)=
1�2

.

Now, using 3.5(iii),

& f &Uf &p, 0�K2(M1)1�2 *1�2hn�p | f &Uf | 2, Rn .

At this stage, the reader should recall that f is being used to denote f 0, and
U is being used to denote Uh . Thus, the above inequality may be rewritten
by asserting that there exist constants K3 and K4 such that

& f &Uh f &p, 0�K3*1�2hn�p | f 0&Uhf 0| 2, Rn

�K3*1�2hn�p | f 0| 2, Rn

�K4*1�2hn�p | f | 2, 0 .
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Finally, the proof of 4.2 shows that there is a constant K5 such that *1�2�
K5hk&n�2.

One needs slightly different techniques to handle the case where 1� p<2.
Following the arguments of the proof as far as Eq. (7), we have

& f &Uf &p, B�K2 *1�2hn�p | f &Uf | 2, B .

Now using Holder's inequality with ( p�2)+(1�q)=1, which is valid for
1� p�2,

& f &Uf &p, 0�& f &Uf &p, 0*

�{ :
t # Th

& f &Uf & p
p, B(t, MRh)]

1�p

�K2 *1�2hn�p { :
t # Th

| f &Uf | p
2, B(t, MRh)]

1�p

�K2 *1�2hn�p { :
t # Th

| f &Uf | 2
2, B(t, MRh)]

1�2

{ :
t # Th

1q=
1�pq

�K$2*1�2hn�p { :
t # Th

| f &Uf | 2
2, B(t, MRh)]

1�2

h&n�pq,

where K$2 is a suitable constant. Now using 3.5(iii),

& f &Uf &p, 0�K$2 M 1�2
1 *1�2hn�2 | f &Uf | 2, R n .

The proof now continues as before, leading to the conclusion that & f &Uf &p

�K5 hk | f | 2, 0 . K

Finally, we have chosen to illustrate the sort of analysis needed by
looking at the surface splines of Duchon, and credited the final result to
Duchon. Strictly speaking, the result in [3] concerns the case 2� p��,
but we do not regard the case 1� p<2 as differing in a substantial way
from the previous case, although the form of the error bound is quite inter-
esting. Our analysis in this section is also helped by the fact that tools are
available from the Sobolev theory. A similar analysis for radial functions
which are conditionally positive definite of some particular order might be
somewhat more delicate.
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